Model-Attentive Ensemble Learning for Sequence Modeling

02/23/2021
by   Victor D. Bourgin, et al.
7

Medical time-series datasets have unique characteristics that make prediction tasks challenging. Most notably, patient trajectories often contain longitudinal variations in their input-output relationships, generally referred to as temporal conditional shift. Designing sequence models capable of adapting to such time-varying distributions remains a prevailing problem. To address this we present Model-Attentive Ensemble learning for Sequence modeling (MAES). MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions. We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset