Model-based graph clustering of a collection of networks using an agglomerative algorithm

11/04/2022
by   Tabea Rebafka, et al.
0

Graph clustering is the task of partitioning a collection of observed networks into groups of similar networks. Here similarity means networks have a similar structure or graph topology. To this end, a model-based approach is developed, where the networks are modelled by a finite mixture model of stochastic block models. Moreover, a computationally efficient clustering algorithm is developed. The procedure is an agglomerative hierarchical algorithm that maximizes the so-called integrated classification likelihood criterion. The bottom-up algorithm consists of successive merges of clusters of networks. Those merges require a means to match block labels of two stochastic block models to overcome the label-switching problem. This problem is addressed with a new distance measure for the comparison of stochastic block models based on their graphons. The algorithm provides a cluster hierarchy in form of a dendrogram and valuable estimates of all model parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro