Model uncertainty estimation using the expectation maximization algorithm and a particle flow filter

11/04/2019
by   María Magdalena Lucini, et al.
0

Model error covariances play a central role in the performance of data assimilation methods applied to nonlinear state-space models. However, these covariances are largely unknown in most of the applications. A misspecification of the model error covariance has a strong impact on the computation of the posterior probability density function, leading to unreliable estimations and even to a total failure of the assimilation procedure. In this work, we propose the combination of the Expectation-Maximization algorithm (EM) with an efficient particle filter to estimate the model error covariance, using a batch of observations. Based on the EM algorithm principles, the proposed method encompasses two stages: the expectation stage, in which a particle filter is used with the present estimate of the model error covariance as given to find the probability density function that maximizes the likelihood, followed by a maximization stage in which the expectation under the probability density function found in the expectation step is maximized as a function of the elements of the model error covariance. This novel algorithm here presented combines the EM with a fixed point algorithm and does not require a particle smoother to approximate the posterior densities. We demonstrate that the new method accurately and efficiently solves the linear model problem. Furthermore, for the chaotic nonlinear Lorenz-96 model the method is stable even for observation error covariance 10 times larger than the estimated model error covariance matrix, and also that it is successful in high-dimensional situations where the dimension of the estimated matrix is 1600.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro