Modelling High-Level Mathematical Reasoning in Mechanised Declarative Proofs

06/13/2020
by   Wenda Li, et al.
0

Mathematical proofs can be mechanised using proof assistants to eliminate gaps and errors. However, mechanisation still requires intensive labour. To promote automation, it is essential to capture high-level human mathematical reasoning, which we address as the problem of generating suitable propositions. We build a non-synthetic dataset from the largest repository of mechanised proofs and propose a task on causal reasoning, where a model is required to fill in a missing intermediate proposition given a causal context. Our experiments (using various neural sequence-to-sequence models) reveal that while the task is challenging, neural models can indeed capture non-trivial mathematical reasoning. We further propose a hierarchical transformer model that outperforms the transformer baseline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset