Modular network for high accuracy object detection

01/24/2020
by   Erez Yahalomi, et al.
16

We present a novel modular object detection convolutional neural network that significantly improves the accuracy of computer vision object detection. The network consists of two stages in a hierarchical structure. The first stage is a network that detects general classes. The second stage consists of separate networks to refine the classification and localization of each of the general classes objects. Compared to a state of the art object detection networks the classification error in the modular network is improved by approximately 3-5 times, from 12 percent to 2.5-4.5 percent. The modular network achieved a very high score in object detection of 0.94 mAP. The network is easy to implement, it can be a platform to improve the accuracy of widespread state of the art object detection networks and other kinds of deep learning networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset