MORe DWR: Space-time goal-oriented error control for incremental POD-based ROM

04/03/2023
by   Hendrik Fischer, et al.
0

In this work, the dual-weighted residual (DWR) method is applied to obtain a certified incremental proper orthogonal decomposition (POD) based reduced order model. A novel approach called MORe DWR (Model Order Rduction with Dual-Weighted Residual error estimates) is being introduced. It marries tensor-product space-time reduced-order modeling with time slabbing and an incremental POD basis generation with goal-oriented error control based on dual-weighted residual estimates. The error in the goal functional is being estimated during the simulation and the POD basis is being updated if the estimate exceeds a given threshold. This allows an adaptive enrichment of the POD basis in case of unforeseen changes in the solution behavior which is of high interest in many real-world applications. Consequently, the offline phase can be skipped, the reduced-order model is being solved directly with the POD basis extracted from the solution on the first time slab and – if necessary – the POD basis is being enriched on-the-fly during the simulation with high-fidelity finite element solutions. Therefore, the full-order model solves can be reduced to a minimum, which is demonstrated on numerical tests for the heat equation and elastodynamics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro