MORe DWR: Space-time goal-oriented error control for incremental POD-based ROM
In this work, the dual-weighted residual (DWR) method is applied to obtain a certified incremental proper orthogonal decomposition (POD) based reduced order model. A novel approach called MORe DWR (Model Order Rduction with Dual-Weighted Residual error estimates) is being introduced. It marries tensor-product space-time reduced-order modeling with time slabbing and an incremental POD basis generation with goal-oriented error control based on dual-weighted residual estimates. The error in the goal functional is being estimated during the simulation and the POD basis is being updated if the estimate exceeds a given threshold. This allows an adaptive enrichment of the POD basis in case of unforeseen changes in the solution behavior which is of high interest in many real-world applications. Consequently, the offline phase can be skipped, the reduced-order model is being solved directly with the POD basis extracted from the solution on the first time slab and – if necessary – the POD basis is being enriched on-the-fly during the simulation with high-fidelity finite element solutions. Therefore, the full-order model solves can be reduced to a minimum, which is demonstrated on numerical tests for the heat equation and elastodynamics.
READ FULL TEXT