MorphNet: A sequence-to-sequence model that combines morphological analysis and disambiguation

05/21/2018
by   Erenay Dayanık, et al.
0

We introduce MorphNet, a single model that combines morphological analysis and disambiguation. Traditionally, analysis of morphologically complex languages has been performed in two stages: (i) A morphological analyzer based on finite-state transducers produces all possible morphological analyses of a word, (ii) A statistical disambiguation model picks the correct analysis based on the context for each word. MorphNet uses a sequence-to-sequence recurrent neural network to combine analysis and disambiguation. We show that when trained with text labeled with correct morphological analyses, MorphNet obtains state-of-the art or comparable results for nine different datasets in seven different languages.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro