Motion Planning Networks

06/14/2018
by   Ahmed H. Qureshi, et al.
0

Fast and efficient motion planning algorithms are crucial for many state-of-the-art robotics applications such as self-driving cars. Existing motion planning methods such as RRT*, A*, and D*, become ineffective as their computational complexity increases exponentially with the dimensionality of the motion planning problem. To address this issue, we present a neural network-based novel planning algorithm which generates end-to-end collision-free paths irrespective of the obstacles' geometry. The proposed method, called MPNet (Motion Planning Network), comprises of a Contractive Autoencoder which encodes the given workspaces directly from a point cloud measurement, and a deep feedforward neural network which takes the workspace encoding, start and goal configuration, and generates end-to-end feasible motion trajectories for the robot to follow. We evaluate MPNet on multiple planning problems such as planning of a point-mass robot, rigid-body, and 7 DOF Baxter robot manipulators in various 2D and 3D environments. The results show that MPNet is not only consistently computationally efficient in all 2D and 3D environments but also show remarkable generalization to completely unseen environments. The results also show that computation time of MPNet consistently remains less than 1 second which is significantly lower than existing state-of-the-art motion planning algorithms. Furthermore, through transfer learning, the MPNet trained in one scenario (e.g., indoor living places) can also quickly adapt to new scenarios (e.g., factory floors) with a little amount of data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset