MP-RW-LSH: An Efficient Multi-Probe LSH Solution to ANNS in L_1 Distance

03/10/2021
by   Huayi Wang, et al.
0

Approximate Nearest Neighbor Search (ANNS) is a fundamental algorithmic problem, with numerous applications in many areas of computer science. Locality-sensitive hashing (LSH) is one of the most popular solution approaches for ANNS. A common shortcoming of many LSH schemes is that since they probe only a single bucket in a hash table, they need to use a large number of hash tables to achieve a high query accuracy. For ANNS-L_2, a multi-probe scheme was proposed to overcome this drawback by strategically probing multiple buckets in a hash table. In this work, we propose MP-RW-LSH, the first and so far only multi-probe LSH solution to ANNS in L_1 distance. Another contribution of this work is to explain why a state-of-the-art ANNS-L_1 solution called Cauchy projection LSH (CP-LSH) is fundamentally not suitable for multi-probe extension. We show that MP-RW-LSH uses 15 to 53 times fewer hash tables than CP-LSH for achieving similar query accuracies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro