MPASNET: Motion Prior-Aware Siamese Network for Unsupervised Deep Crowd Segmentation in Video Scenes

01/21/2021
by   Jinhai Yang, et al.
0

Crowd segmentation is a fundamental task serving as the basis of crowded scene analysis, and it is highly desirable to obtain refined pixel-level segmentation maps. However, it remains a challenging problem, as existing approaches either require dense pixel-level annotations to train deep learning models or merely produce rough segmentation maps from optical or particle flows with physical models. In this paper, we propose the Motion Prior-Aware Siamese Network (MPASNET) for unsupervised crowd semantic segmentation. This model not only eliminates the need for annotation but also yields high-quality segmentation maps. Specially, we first analyze the coherent motion patterns across the frames and then apply a circular region merging strategy on the collective particles to generate pseudo-labels. Moreover, we equip MPASNET with siamese branches for augmentation-invariant regularization and siamese feature aggregation. Experiments over benchmark datasets indicate that our model outperforms the state-of-the-arts by more than 12

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro