Multi-Class Segmentation from Aerial Views using Recursive Noise Diffusion

12/01/2022
by   Benedikt Kolbeinsson, et al.
0

Semantic segmentation from aerial views is a vital task for autonomous drones as they require precise and accurate segmentation to traverse safely and efficiently. Segmenting images from aerial views is especially challenging as they include diverse view-points, extreme scale variation and high scene complexity. To address this problem, we propose an end-to-end multi-class semantic segmentation diffusion model. We introduce recursive denoising which allows predicted error to propagate through the denoising process. In addition, we combine this with a hierarchical multi-scale approach, complementary to the diffusion process. Our method achieves state-of-the-art results on UAVid and on the Vaihingen building segmentation benchmark.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro