Multi-Mapping Image-to-Image Translation with Central Biasing Normalization

by   Xiaoming Yu, et al.

Recent image-to-image translation tasks attempt to extend the model from one-to-one mapping to multiple mappings by injecting latent code. Based on the mathematical formulation of networks with existing way of latent code injection, we show the role of latent code is to control the mean of the feature maps after convolution. Then we find common normalization strategies might reduce the diversity of different mappings or the consistency of one specific mapping, which is not suitable for the multi-mapping tasks. We provide the mathematical derivation that the effects of latent code are eliminated after instance normalization and the distributions of the same mapping become inconsistent after batch normalization. To address these problems, we present consistency within diversity design criteria for multi-mapping networks and propose central biasing normalization by applying a slight yet significant change to existing normalization strategies. Instead of spatial replicating and concatenating into the input layers, we inject the latent code into the normalization layers where the offset of feature maps is eliminated to ensure the output consistency for one specific mapping and the bias calculated by latent code is appended to achieve the output diversity for different mappings. In this way, not only is the proposed design criteria met, but the modified generator network has much smaller number of parameters. We apply this technique to multi-modal and multi-domain translation tasks. Both quantitative and qualitative evaluations show that our method outperforms current state-of-the-art methods. Code and pretrained models are available at


page 2

page 7

page 8

page 10

page 11


Multi-mapping Image-to-Image Translation via Learning Disentanglement

Recent advances of image-to-image translation focus on learning the one-...

Toward Multimodal Image-to-Image Translation

Many image-to-image translation problems are ambiguous, as a single inpu...

Zero-Pair Image to Image Translation using Domain Conditional Normalization

In this paper, we propose an approach based on domain conditional normal...

StarGAN v2: Diverse Image Synthesis for Multiple Domains

A good image-to-image translation model should learn a mapping between d...

TSIT: A Simple and Versatile Framework for Image-to-Image Translation

We introduce a simple and versatile framework for image-to-image transla...

Ultra-high-resolution unpaired stain transformation via Kernelized Instance Normalization

While hematoxylin and eosin (H E) is a standard staining procedure, im...

Semantic Example Guided Image-to-Image Translation

Many image-to-image (I2I) translation problems are in nature of high div...

Please sign up or login with your details

Forgot password? Click here to reset