Multi-objective Optimisation of Digital Circuits based on Cell Mapping in an Industrial EDA Flow

05/21/2021
by   Linan Cao, et al.
0

Modern electronic design automation (EDA) tools can handle the complexity of state-of-the-art electronic systems by decomposing them into smaller blocks or cells, introducing different levels of abstraction and staged design flows. However, throughout each independent-optimised design step, overhead and inefficiency can accumulate in the resulting overall design. Performing design-specific optimisation from a more global viewpoint requires more time due to the larger search space, but has the potential to provide solutions with improved performance. In this work, a fully-automated, multi-objective (MO) EDA flow is introduced to address this issue. It specifically tunes drive strength mapping, preceding physical implementation, through multi-objective population-based search algorithms. Designs are evaluated with respect to their power, performance and area (PPA). The proposed approach is capable of expanding the design space, offering a set of Pareto-optimised trade-off solutions for different case-specific utilisation. We have applied the proposed MOEDA framework to ISCAS-85 benchmark circuits using a commercial 65nm standard cell library. The experimental results demonstrate how the MOEDA flow enhances the solutions initially generated by the standard digital flow, and how simultaneously a significant improvement in PPA metrics is achieved.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro