Multi-path RNN for hierarchical modeling of long sequential data and its application to speaker stream separation

06/24/2020
by   Keisuke Kinoshita, et al.
0

Recently, the source separation performance was greatly improved by time-domain audio source separation based on dual-path recurrent neural network (DPRNN). DPRNN is a simple but effective model for a long sequential data. While DPRNN is quite efficient in modeling a sequential data of the length of an utterance, i.e., about 5 to 10 second data, it is harder to apply it to longer sequences such as whole conversations consisting of multiple utterances. It is simply because, in such a case, the number of time steps consumed by its internal module called inter-chunk RNN becomes extremely large. To mitigate this problem, this paper proposes a multi-path RNN (MPRNN), a generalized version of DPRNN, that models the input data in a hierarchical manner. In the MPRNN framework, the input data is represented at several (>3) time-resolutions, each of which is modeled by a specific RNN sub-module. For example, the RNN sub-module that deals with the finest resolution may model temporal relationship only within a phoneme, while the RNN sub-module handling the most coarse resolution may capture only the relationship between utterances such as speaker information. We perform experiments using simulated dialogue-like mixtures and show that MPRNN has greater model capacity, and it outperforms the current state-of-the-art DPRNN framework especially in online processing scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro