Multi-Stage Based Feature Fusion of Multi-Modal Data for Human Activity Recognition
To properly assist humans in their needs, human activity recognition (HAR) systems need the ability to fuse information from multiple modalities. Our hypothesis is that multimodal sensors, visual and non-visual tend to provide complementary information, addressing the limitations of other modalities. In this work, we propose a multi-modal framework that learns to effectively combine features from RGB Video and IMU sensors, and show its robustness for MMAct and UTD-MHAD datasets. Our model is trained in two-stage, where in the first stage, each input encoder learns to effectively extract features, and in the second stage, learns to combine these individual features. We show significant improvements of 22 setup on UTD-MHAD dataset, and 20 experimentation, we show the robustness of our model on zero shot setting, and limited annotated data setting. We further compare with state-of-the-art methods that use more input modalities and show that our method outperforms significantly on the more difficult MMact dataset, and performs comparably in UTD-MHAD dataset.
READ FULL TEXT