Multi-study factor regression model: an application in nutritional epidemiology

by   Roberta De Vito, et al.

Diet is a risk factor for many diseases. In nutritional epidemiology, studying reproducible dietary patterns is critical to reveal important associations with health. However, it is challenging: diverse cultural and ethnic backgrounds may critically impact eating patterns, showing heterogeneity, leading to incorrect dietary patterns and obscuring the components shared across different groups or populations. Moreover, covariate effects generated from observed variables, such as demographics and other confounders, can further bias these dietary patterns. Identifying the shared and group-specific dietary components and covariate effects is essential to drive accurate conclusions. To address these issues, we introduce a new modeling factor regression, the Multi-Study Factor Regression (MSFR) model. The MSFR model analyzes different populations simultaneously, achieving three goals: capturing shared component(s) across populations, identifying group-specific structures, and correcting for covariate effects. We use this novel method to derive common and ethnic-specific dietary patterns in a multi-center epidemiological study in Hispanic/Latinos community. Our model improves the accuracy of common and group dietary signals and yields better prediction than other techniques, revealing significant associations with health. In summary, we provide a tool to integrate different groups, giving accurate dietary signals crucial to inform public health policy.


Regression inference for multiple populations by integrating summary-level data using stacked imputations

There is a growing need for flexible general frameworks that integrate i...

Robust and flexible inference for the covariate-specific ROC curve

Diagnostic tests are of critical importance in health care and medical r...

A Bayesian Zero-Inflated Negative Binomial Regression Model for the Integrative Analysis of Microbiome Data

Microbiome `omics approaches can reveal intriguing relationships between...

Bayesian Dynamic Network Modelling: an application to metabolic associations in cardiovascular diseases

We propose a novel approach to the estimation of multiple Graphical Mode...

Smoothing spline analysis of variance models: A new tool for the analysis of accelerometer data

Accelerometer data is commonplace in physical activity research, exercis...

Latent Subgroup Identification in Image-on-scalar Regression

Image-on-scalar regression has been a popular approach to modeling the a...

Correcting for Measurement Error in Segmented Cox Model

Measurement error in the covariate of main interest (e.g. the exposure v...

Please sign up or login with your details

Forgot password? Click here to reset