Multi-view Feature Extraction based on Dual Contrastive Head
Multi-view feature extraction is an efficient approach for alleviating the issue of dimensionality in highdimensional multi-view data. Contrastive learning (CL), which is a popular self-supervised learning method, has recently attracted considerable attention. Most CL-based methods were constructed only from the sample level. In this study, we propose a novel multiview feature extraction method based on dual contrastive head, which introduce structural-level contrastive loss into sample-level CL-based method. Structural-level CL push the potential subspace structures consistent in any two cross views, which assists sample-level CL to extract discriminative features more effectively. Furthermore, it is proven that the relationships between structural-level CL and mutual information and probabilistic intraand inter-scatter, which provides the theoretical support for the excellent performance. Finally, numerical experiments on six real datasets demonstrate the superior performance of the proposed method compared to existing methods.
READ FULL TEXT