Multimodal-based Scene-Aware Framework for Aquatic Animal Segmentation

12/12/2021
by   Minh-Quan Le, et al.
0

Recent years have witnessed great advances in object segmentation research. In addition to generic objects, aquatic animals have attracted research attention. Deep learning-based methods are widely used for aquatic animal segmentation and have achieved promising performance. However, there is a lack of challenging datasets for benchmarking. Therefore, we have created a new dataset dubbed "Aquatic Animal Species." Furthermore, we devised a novel multimodal-based scene-aware segmentation framework that leverages the advantages of multiple view segmentation models to segment images of aquatic animals effectively. To improve training performance, we developed a guided mixup augmentation method. Extensive experiments comparing the performance of the proposed framework with state-of-the-art instance segmentation methods demonstrated that our method is effective and that it significantly outperforms existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset