Multimodal Generative Models for Scalable Weakly-Supervised Learning

02/14/2018
by   Mike Wu, et al.
0

Multiple modalities often co-occur when describing natural phenomena. Learning a joint representation of these modalities should yield deeper and more useful representations. Previous work have proposed generative models to handle multi-modal input. However, these models either do not learn a joint distribution or require complex additional computations to handle missing data. Here, we introduce a multimodal variational autoencoder that uses a product-of-experts inference network and a sub-sampled training paradigm to solve the multi-modal inference problem. Notably, our model shares parameters to efficiently learn under any combination of missing modalities, thereby enabling weakly-supervised learning. We apply our method on four datasets and show that we match state-of-the-art performance using many fewer parameters. In each case our approach yields strong weakly-supervised results. We then consider a case study of learning image transformations---edge detection, colorization, facial landmark segmentation, etc.---as a set of modalities. We find appealing results across this range of tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset