Multiple Style Transfer via Variational AutoEncoder

10/13/2021
by   Zhi-Song Liu, et al.
18

Modern works on style transfer focus on transferring style from a single image. Recently, some approaches study multiple style transfer; these, however, are either too slow or fail to mix multiple styles. We propose ST-VAE, a Variational AutoEncoder for latent space-based style transfer. It performs multiple style transfer by projecting nonlinear styles to a linear latent space, enabling to merge styles via linear interpolation before transferring the new style to the content image. To evaluate ST-VAE, we experiment on COCO for single and multiple style transfer. We also present a case study revealing that ST-VAE outperforms other methods while being faster, flexible, and setting a new path for multiple style transfer.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro