Multisensor Multiobject Tracking With High-Dimensional Object States

12/30/2022
by   Wenyu Zhang, et al.
0

Passive monitoring of acoustic or radio sources has important applications in modern convenience, public safety, and surveillance. A key task in passive monitoring is multiobject tracking (MOT). This paper presents a Bayesian method for multisensor MOT for challenging tracking problems where the object states are high-dimensional, and the measurements follow a nonlinear model. Our method is developed in the framework of factor graphs and the sum-product algorithm (SPA). The multimodal probability density functions (pdfs) provided by the SPA are effectively represented by a Gaussian mixture model (GMM). To perform the operations of the SPA in high-dimensional spaces, we make use of Particle flow (PFL). Here, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance even in challenging multisensor MOT scenarios with single sensor measurements that have a lower dimension than the object positions. We perform a numerical evaluation in a passive acoustic monitoring scenario where multiple sources are tracked in 3-D from 1-D time-difference-of-arrival (TDOA) measurements provided by pairs of hydrophones. Our numerical results demonstrate favorable detection and estimation accuracy compared to state-of-the-art reference techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset