Multivariate Hierarchical Frameworks for Modelling Delayed Reporting in Count Data
In many fields and applications count data can be subject to delayed reporting. This is where the total count, such as the number of disease cases contracted in a given week, may not be immediately available, instead arriving in parts over time. For short term decision making, the statistical challenge lies in predicting the total count based on any observed partial counts, along with a robust quantification of uncertainty. In this article we discuss previous approaches to modelling delayed reporting and present a multivariate hierarchical framework where the count generating process and delay mechanism are modelled simultaneously. Unlike other approaches, the framework can also be easily adapted to allow for the presence of under-reporting in the final observed count. To compare our approach with existing frameworks, one of which we extend to potentially improve predictive performance, we present a case study of reported dengue fever cases in Rio de Janeiro. Based on both within-sample and out-of-sample posterior predictive model checking and arguments of interpretability, adaptability, and computational efficiency, we discuss the advantages and disadvantages of each modelling framework.
READ FULL TEXT