Music-to-Text Synaesthesia: Generating Descriptive Text from Music Recordings

10/02/2022
by   Zhihuan Kuang, et al.
0

In this paper, we consider a novel research problem, music-to-text synaesthesia. Different from the classical music tagging problem that classifies a music recording into pre-defined categories, the music-to-text synaesthesia aims to generate descriptive texts from music recordings for further understanding. Although this is a new and interesting application to the machine learning community, to our best knowledge, the existing music-related datasets do not contain the semantic descriptions on music recordings and cannot serve the music-to-text synaesthesia task. In light of this, we collect a new dataset that contains 1,955 aligned pairs of classical music recordings and text descriptions. Based on this, we build a computational model to generate sentences that can describe the content of the music recording. To tackle the highly non-discriminative classical music, we design a group topology-preservation loss in our computational model, which considers more samples as a group reference and preserves the relative topology among different samples. Extensive experimental results qualitatively and quantitatively demonstrate the effectiveness of our proposed model over five heuristics or pre-trained competitive methods and their variants on our collected dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro