MVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks

03/05/2022
by   Sicong Cao, et al.
0

Memory-related vulnerabilities constitute severe threats to the security of modern software. Despite the success of deep learning-based approaches to generic vulnerability detection, they are still limited by the underutilization of flow information when applied for detecting memory-related vulnerabilities, leading to high false positives. In this paper,we propose MVD, a statement-level Memory-related Vulnerability Detection approach based on flow-sensitive graph neural networks (FS-GNN). FS-GNN is employed to jointly embed both unstructured information (i.e., source code) and structured information (i.e., control- and data-flow) to capture implicit memory-related vulnerability patterns. We evaluate MVD on the dataset which contains 4,353 real-world memory-related vulnerabilities, and compare our approach with three state-of-the-art deep learning-based approaches as well as five popular static analysisbased memory detectors. The experiment results show that MVD achieves better detection accuracy, outperforming both state-of-theart DL-based and static analysis-based approaches. Furthermore, MVD makes a great trade-off between accuracy and efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro