Network-Assisted Full-Duplex Cell-Free mmWave Massive MIMO Systems with DAC Quantization and Fronthaul Compression
In this paper, we investigate network-assisted full-duplex (NAFD) cell-free millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with digital-to-analog converter (DAC) quantization and fronthaul compression. We propose to maximize the weighted uplink and downlink sum rate by jointly optimizing the power allocation of both the transmitting remote antenna units (T-RAUs) and uplink users and the variances of the downlink and uplink fronthaul compression noises. To deal with this challenging problem, we further apply a successive convex approximation (SCA) method to handle the non-convex bidirectional limited-capacity fronthaul constraints. The simulation results verify the convergence of the proposed SCA-based algorithm and analyze the impact of fronthaul capacity and DAC quantization on the spectral efficiency of the NAFD cell-free mmWave massive MIMO systems. Moreover, some insightful conclusions are obtained through the comparisons of spectral efficiency, which shows that NAFD achieves better performance gains than co-time co-frequency full-duplex cloud radio access network (CCFD C-RAN) in the cases of practical limited-resolution DACs. Specifically, their performance gaps with 8-bit DAC quantization are larger than that with 1-bit DAC quantization, which attains a 5.5-fold improvement.
READ FULL TEXT