Neural Code Search Revisited: Enhancing Code Snippet Retrieval through Natural Language Intent

08/27/2020
by   Geert Heyman, et al.
0

In this work, we propose and study annotated code search: the retrieval of code snippets paired with brief descriptions of their intent using natural language queries. On three benchmark datasets, we investigate how code retrieval systems can be improved by leveraging descriptions to better capture the intents of code snippets. Building on recent progress in transfer learning and natural language processing, we create a domain-specific retrieval model for code annotated with a natural language description. We find that our model yields significantly more relevant search results (with absolute gains up to 20.6 methods that do not use descriptions but attempt to compute the intent of snippets solely from unannotated code.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset