Neural Dynamics on Complex Networks

08/18/2019
by   Chengxi Zang, et al.
0

We introduce a deep learning model to learn continuous-time dynamics on complex networks and infer the semantic labels of nodes in the network at terminal time. We formulate the problem as an optimal control problem by minimizing a loss function consisting of a running loss of network dynamics, a terminal loss of nodes' labels, and a neural-differential-equation-system constraint. We solve the problem by a differential deep learning framework: as for the forward process of the system, rather than forwarding through a discrete number of hidden layers, we integrate the ordinary differential equation systems on graphs over continuous time; as for the backward learning process, we learn the optimal control parameters by back-propagation during solving initial value problem. We validate our model by learning complex dynamics on various real-world complex networks, and then apply our model to graph semi-supervised classification tasks. The promising experimental results demonstrate our model's capability of jointly capturing the structure, dynamics and semantics of complex systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset