Neural Video Portrait Relighting in Real-time via Consistency Modeling

04/01/2021
by   Longwen Zhang, et al.
0

Video portraits relighting is critical in user-facing human photography, especially for immersive VR/AR experience. Recent advances still fail to recover consistent relit result under dynamic illuminations from monocular RGB stream, suffering from the lack of video consistency supervision. In this paper, we propose a neural approach for real-time, high-quality and coherent video portrait relighting, which jointly models the semantic, temporal and lighting consistency using a new dynamic OLAT dataset. We propose a hybrid structure and lighting disentanglement in an encoder-decoder architecture, which combines a multi-task and adversarial training strategy for semantic-aware consistency modeling. We adopt a temporal modeling scheme via flow-based supervision to encode the conjugated temporal consistency in a cross manner. We also propose a lighting sampling strategy to model the illumination consistency and mutation for natural portrait light manipulation in real-world. Extensive experiments demonstrate the effectiveness of our approach for consistent video portrait light-editing and relighting, even using mobile computing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro