Neural voice cloning with a few low-quality samples
In this paper, we explore the possibility of speech synthesis from low quality found data using only limited number of samples of target speaker. We try to extract only the speaker embedding from found data of target speaker unlike previous works which tries to train the entire text-to-speech system on found data. Also, the two speaker mimicking approaches which are adaptation and speaker-encoder-based are applied on newly released LibriTTS dataset and previously released VCTK corpus to examine the impact of speaker variety on clarity and target-speaker-similarity .
READ FULL TEXT