NeurASP: Embracing Neural Networks into Answer Set Programming

07/15/2023
by   Zhun Yang, et al.
0

We present NeurASP, a simple extension of answer set programs by embracing neural networks. By treating the neural network output as the probability distribution over atomic facts in answer set programs, NeurASP provides a simple and effective way to integrate sub-symbolic and symbolic computation. We demonstrate how NeurASP can make use of a pre-trained neural network in symbolic computation and how it can improve the neural network's perception result by applying symbolic reasoning in answer set programming. Also, NeurASP can be used to train a neural network better by training with ASP rules so that a neural network not only learns from implicit correlations from the data but also from the explicit complex semantic constraints expressed by the rules.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset