Newtonian Program Analysis of Probabilistic Programs
Due to their quantitative nature, probabilistic programs pose non-trivial challenges for designing compositional and efficient program analyses. Many analyses for probabilistic programs rely on iterative approximation. This article presents an interprocedural dataflow-analysis framework, called NPA-PMA, for designing and implementing (partially) non-iterative program analyses of probabilistic programs with unstructured control-flow, nondeterminism, and general recursion. NPA-PMA is based on Newtonian Program Analysis (NPA), a generalization of Newton's method to solve equation systems over semirings. The key challenge for developing NPA-PMA is to handle multiple kinds of confluences in both the algebraic structures that specify analyses and the equation systems that encode control flow: semirings support a single confluence operation, whereas NPA-PMA involves three confluence operations (conditional, probabilistic, and nondeterministic). Our work introduces ω-continuous pre-Markov algebras (ωPMAs) to factor out common parts of different analyses; adopts regular infinite-tree expressions to encode program-execution paths in control-flow hyper-graphs; and presents a linearization method that makes Newton's method applicable to the setting of regular-infinite-tree equations over ωPMAs. NPA-PMA allows analyses to supply a non-iterative strategy to solve linearized equations. Our experimental evaluation demonstrates that (i) NPA-PMA holds considerable promise for outperforming Kleene iteration, and (ii) provides great generality for designing program analyses.
READ FULL TEXT