Night-time Semantic Segmentation with a Large Real Dataset

03/15/2020
by   Xin Tan, et al.
0

Although huge progress has been made on semantic segmentation in recent years, most existing works assume that the input images are captured in day-time with good lighting conditions. In this work, we aim to address the semantic segmentation problem of night-time scenes, which has two main challenges: 1) labeled night-time data are scarce, and 2) over- and under-exposures may co-occur in the input night-time images and are not explicitly modeled in existing semantic segmentation pipelines. To tackle the scarcity of night-time data, we collect a novel labeled dataset (named NightCity) of 4,297 real night-time images with ground truth pixel-level semantic annotations. To our knowledge, NightCity is the largest dataset for night-time semantic segmentation. In addition, we also propose an exposure-aware framework to address the night-time segmentation problem through augmenting the segmentation process with explicitly learned exposure features. Extensive experiments show that training on NightCity can significantly improve the performance of night-time semantic segmentation and that our exposure-aware model outperforms the state-of-the-art segmentation methods, yielding top performances on our benchmark dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro