NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist

05/15/2023
by   Iftitahu Ni'mah, et al.
6

In this study, we analyze NLG automatic metrics based on whether human evaluation aspect is used as context or objective to compute the metrics: (i) Task-agnostic and (ii) Human-aligned. Task-agnostic metrics, such as Perplexity, BLEU, BERTScore, are cost-effective and highly adaptable to diverse NLG tasks, yet they have a weak correlation with human. Human-aligned metrics (CTC, CtrlEval, UniEval) improves correlation level by incorporating desirable human-like qualities as training objective. However, their effectiveness at discerning system-level performance and quality of system outputs remain unclear. We present metric preference checklist as a framework to assess the discriminative power of automatic metrics in three NLG tasks: Text Summarization, Dialogue Response Generation, and Controlled Generation. We show that multi-aspect human-aligned metric (UniEval) is not necessarily dominant over single-aspect human-aligned metrics (CTC, CtrlEval) and task-agnostic metrics (BLEU, BERTScore), particularly when a disagreement between human evaluation aspects is present. We also show particular use cases in which automatic metrics provide a better guidance than human on discriminating system-level performance. Our proposed framework provides access: (i) for verifying whether automatic metrics are faithful to human preference, regardless their correlation level to human; and (ii) for scrutinizing the strengths and limitations of NLG systems, which are often obscured by a standard averaging method of evaluation scores.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro