No self-concordant barrier interior point method is strongly polynomial

01/06/2022
by   Xavier Allamigeon, et al.
0

It is an open question to determine if the theory of self-concordant barriers can provide an interior point method with strongly polynomial complexity in linear programming. In the special case of the logarithmic barrier, it was shown in [Allamigeon, Benchimol, Gaubert and Joswig, SIAM J. on Applied Algebra and Geometry, 2018] that the answer is negative. In this paper, we show that none of the self-concordant barrier interior point methods is strongly polynomial. This result is obtained by establishing that, on parametric families of convex optimization problems, the log-limit of the central path degenerates to a piecewise linear curve, independently of the choice of the barrier function. We provide an explicit linear program that falls in the same class as the Klee-Minty counterexample, i.e., in dimension n with 2n constraints, in which the number of iterations is Ω(2^n).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset