Non-convex, ringing-free, FFT-accelerated solver using an incremental approximate energy functional

07/15/2022
by   Ali Falsafi, et al.
0

Fourier-accelerated micromechanical homogenization has been developed and applied to a variety of problems, despite being prone to ringing artifacts. In addition, the majority of Fourier-accelerated solvers applied to FFT-accelerated schemes only apply to convex problems. We here introduce a that allows to employ modern efficient and non-convex iterative solvers, such as trust-region solvers or LBFGS in a FFT-accelerated scheme. These solvers need the explicit energy functional of the system in their standard form. We develop a modified trust region solver, capable of handling non-convex micromechanical homogenization problems such as continuum damage employing the approximate incremental energy functional. We use the developed solver as the solver of a ringing-free FFT-accelerated solution scheme, namely the projection based scheme with finite element discretization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro