Nonparanormal Information Estimation

02/24/2017
by   Shashank Singh, et al.
0

We study the problem of using i.i.d. samples from an unknown multivariate probability distribution p to estimate the mutual information of p. This problem has recently received attention in two settings: (1) where p is assumed to be Gaussian and (2) where p is assumed only to lie in a large nonparametric smoothness class. Estimators proposed for the Gaussian case converge in high dimensions when the Gaussian assumption holds, but are brittle, failing dramatically when p is not Gaussian. Estimators proposed for the nonparametric case fail to converge with realistic sample sizes except in very low dimensions. As a result, there is a lack of robust mutual information estimators for many realistic data. To address this, we propose estimators for mutual information when p is assumed to be a nonparanormal (a.k.a., Gaussian copula) model, a semiparametric compromise between Gaussian and nonparametric extremes. Using theoretical bounds and experiments, we show these estimators strike a practical balance between robustness and scaling with dimensionality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro