Not All Fabrics Are Created Equal: Exploring eFPGA Parameters For IP Redaction
Semiconductor design houses rely on third-party foundries to manufacture their integrated circuits (IC). While this trend allows them to tackle fabrication costs, it introduces security concerns as external (and potentially malicious) parties can access critical parts of the designs and steal or modify the Intellectual Property (IP). Embedded FPGA (eFPGA) redaction is a promising technique to protect critical IPs of an ASIC by redacting (i.e., removing) critical parts and mapping them onto a custom reconfigurable fabric. Only trusted parties will receive the correct bitstream to restore the redacted functionality. While previous studies imply that using an eFPGA is a sufficient condition to provide security against IP threats like reverse-engineering, whether this truly holds for all eFPGA architectures is unclear, thus motivating the study in this paper. We examine the security of eFPGA fabrics generated by varying different FPGA design parameters. We characterize the power, performance, and area (PPA) characteristics and evaluate each fabric's resistance to SAT-based bitstream recovery. Our results encourage designers to work with custom eFPGA fabrics rather than off-the-shelf commercial FPGAs and reveals that only considering a redaction fabric's bitstream size is inadequate for gauging security.
READ FULL TEXT