OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images
Deep learning models, such as the fully convolutional network (FCN), have been widely used in 3D biomedical segmentation and achieved state-of-the-art performance. Multiple modalities are often used for disease diagnosis and quantification. Two approaches are widely used in the literature to fuse multiple modalities in the segmentation networks: early-fusion (which stacks multiple modalities as different input channels) and late-fusion (which fuses the segmentation results from different modalities at the very end). These fusion methods easily suffer from the cross-modal interference caused by the input modalities which have wide variations. To address the problem, we propose a novel deep learning architecture, namely OctopusNet, to better leverage and fuse the information contained in multi-modalities. The proposed framework employs a separate encoder for each modality for feature extraction and exploits a hyper-fusion decoder to fuse the extracted features while avoiding feature explosion. We evaluate the proposed OctopusNet on two publicly available datasets, i.e. ISLES-2018 and MRBrainS-2013. The experimental results show that our framework outperforms the commonly-used feature fusion approaches and yields the state-of-the-art segmentation accuracy.
READ FULL TEXT