Offline Clustering Approach to Self-supervised Learning for Class-imbalanced Image Data

12/22/2022
by   Hye-min Chang, et al.
0

Class-imbalanced datasets are known to cause the problem of model being biased towards the majority classes. In this project, we set up two research questions: 1) when is the class-imbalance problem more prevalent in self-supervised pre-training? and 2) can offline clustering of feature representations help pre-training on class-imbalanced data? Our experiments investigate the former question by adjusting the degree of class-imbalance when training the baseline models, namely SimCLR and SimSiam on CIFAR-10 database. To answer the latter question, we train each expert model on each subset of the feature clusters. We then distill the knowledge of expert models into a single model, so that we will be able to compare the performance of this model to our baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset