On a Dehn-Sommerville functional for simplicial complexes

05/30/2017
by   Oliver Knill, et al.
0

Assume G is a finite abstract simplicial complex with f-vector (v0,v1, ...), and generating function f(x) = sum(k=1 v(k-1) x^k = v0 x + v1 x^2+ v2 x^3 + ..., the Euler characteristic of G can be written as chi(G)=f(0)-f(-1). We study here the functional f1'(0)-f1'(-1), where f1' is the derivative of the generating function f1 of G1. The Barycentric refinement G1 of G is the Whitney complex of the finite simple graph for which the faces of G are the vertices and where two faces are connected if one is a subset of the other. Let L is the connection Laplacian of G, which is L=1+A, where A is the adjacency matrix of the connection graph G', which has the same vertex set than G1 but where two faces are connected they intersect. We have f1'(0)=tr(L) and for the Green function g L^(-1) also f1'(-1)=tr(g) so that eta1(G) = f1'(0)-f1'(-1) is equal to eta(G)=tr(L-L^(-1). The established formula tr(g)=f1'(-1) for the generating function of G1 complements the determinant expression det(L)=det(g)=zeta(-1) for the Bowen-Lanford zeta function zeta(z)=1/det(1-z A) of the connection graph G' of G. We also establish a Gauss-Bonnet formula eta1(G) = sum(x in V(G1) chi(S(x)), where S(x) is the unit sphere of x the graph generated by all vertices in G1 directly connected to x. Finally, we point out that the functional eta0(G) = sum(x in V(G) chi(S(x)) on graphs takes arbitrary small and arbitrary large values on every homotopy type of graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset