On All-Action Policy Gradients

10/24/2022
by   Michal Nauman, et al.
0

In this paper, we analyze the variance of stochastic policy gradient with many action samples per state (all-action SPG). We decompose the variance of SPG and derive an optimality condition for all-action SPG. The optimality condition shows when all-action SPG should be preferred over single-action counterpart and allows to determine a variance-minimizing sampling scheme in SPG estimation. Furthermore, we propose dynamics-all-action (DAA) module, an augmentation that allows for all-action sampling without manipulation of the environment. DAA addresses the problems associated with using a Q-network for all-action sampling and can be readily applied to any on-policy SPG algorithm. We find that using DAA with a canonical on-policy algorithm (PPO) yields better sample efficiency and higher policy returns on a variety of challenging continuous action environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro