On Computing Coercivity Constants in Linear Variational Problems Through Eigenvalue Analysis
In this work, we investigate the convergence of numerical approximations to coercivity constants of variational problems. These constants are essential components of rigorous error bounds for reduced-order modeling; extension of these bounds to the error with respect to exact solutions requires an understanding of convergence rates for discrete coercivity constants. The results are obtained by characterizing the coercivity constant as a spectral value of a self-adjoint linear operator; for several differential equations, we show that the coercivity constant is related to the eigenvalue of a compact operator. For these applications, convergence rates are derived and verified with numerical examples.
READ FULL TEXT