On DC based Methods for Phase Retrieval

10/22/2018
by   Meng Huang, et al.
0

In this paper, we develop a new computational approach which is based on minimizing the difference of two convex functionals (DC) to solve a broader class of phase retrieval problems. The approach splits a standard nonlinear least squares minimizing function associated with the phase retrieval problem into the difference of two convex functions and then solves a sequence of convex minimization sub-problems. For each subproblem, the Nesterov's accelerated gradient descent algorithm or the Barzilai-Borwein (BB) algorithm is used. In the setting of sparse phase retrieval, a standard ℓ_1 norm term is added into the minimization mentioned above. The subproblem is approximated by a proximal gradient method which is solved by the shrinkage-threshold technique directly without iterations. In addition, a modified Attouch-Peypouquet technique is used to accelerate the iterative computation. These lead to more effective algorithms than the Wirtinger flow (WF) algorithm and the Gauss-Newton (GN) algorithm and etc.. A convergence analysis of both DC based algorithms shows that the iterative solutions is convergent linearly to a critical point and will be closer to a global minimizer than the given initial starting point. Our study is a deterministic analysis while the study for the Wirtinger flow (WF) algorithm and its variants, the Gauss-Newton (GN) algorithm, the trust region algorithm is based on the probability analysis. In particular, the DC based algorithms are able to retrieve solutions using a number m of measurements which is about twice of the number n of entries in the solution with high frequency of successes. When m≈ n, the ℓ_1 DC based algorithm is able to retrieve sparse signals.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro