On-demand compute reduction with stochastic wav2vec 2.0

04/25/2022
by   Apoorv Vyas, et al.
0

Squeeze and Efficient Wav2vec (SEW) is a recently proposed architecture that squeezes the input to the transformer encoder for compute efficient pre-training and inference with wav2vec 2.0 (W2V2) models. In this work, we propose stochastic compression for on-demand compute reduction for W2V2 models. As opposed to using a fixed squeeze factor, we sample it uniformly during training. We further introduce query and key-value pooling mechanisms that can be applied to each transformer layer for further compression. Our results for models pre-trained on 960h Librispeech dataset and fine-tuned on 10h of transcribed data show that using the same stochastic model, we get a smooth trade-off between word error rate (WER) and inference time with only marginal WER degradation compared to the W2V2 and SEW models trained for a specific setting. We further show that we can fine-tune the same stochastically pre-trained model to a specific configuration to recover the WER difference resulting in significant computational savings on pre-training models from scratch.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro