On-Device Intelligence for 5G RAN: Knowledge Transfer and Federated Learning enabled UE-Centric Traffic Steering

04/22/2023
by   Han Zhang, et al.
0

Traffic steering (TS) is a promising approach to support various service requirements and enhance transmission reliability by distributing network traffic loads to appropriate base stations (BSs). In conventional cell-centric TS strategies, BSs make TS decisions for all user equipment (UEs) in a centralized manner, which focuses more on the overall performance of the whole cell, disregarding specific requirements of individual UE. The flourishing machine learning technologies and evolving UE-centric 5G network architecture have prompted the emergence of new TS technologies. In this paper, we propose a knowledge transfer and federated learning-enabled UE-centric (KT-FLUC) TS framework for highly dynamic 5G radio access networks (RAN). Specifically, first, we propose an attention-weighted group federated learning scheme. It enables intelligent UEs to make TS decisions autonomously using local models and observations, and a global model is defined to coordinate local TS decisions and share experiences among UEs. Secondly, considering the individual UE's limited computation and energy resources, a growing and pruning-based model compression method is introduced, mitigating the computation burden of UEs and reducing the communication overhead of federated learning. In addition, we propose a Q-value-based knowledge transfer method to initialize newcomer UEs, achieving a jump start for their training efficiency. Finally, the simulations show that our proposed KT-FLUC algorithm can effectively improve the service quality, achieving 65% and 38% lower delay and 52 throughput compared with cell-based TS and other UE-centric TS strategies, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro