On Dynamic Pricing with Covariates

by   Hanzhao Wang, et al.

We consider the dynamic pricing problem with covariates under a generalized linear demand model: a seller can dynamically adjust the price of a product over a horizon of T time periods, and at each time period t, the demand of the product is jointly determined by the price and an observable covariate vector x_t∈ℝ^d through an unknown generalized linear model. Most of the existing literature assumes the covariate vectors x_t's are independently and identically distributed (i.i.d.); the few papers that relax this assumption either sacrifice model generality or yield sub-optimal regret bounds. In this paper we show that a simple pricing algorithm has an O(d√(T)log T) regret upper bound without assuming any statistical structure on the covariates x_t (which can even be arbitrarily chosen). The upper bound on the regret matches the lower bound (even under the i.i.d. assumption) up to logarithmic factors. Our paper thus shows that (i) the i.i.d. assumption is not necessary for obtaining low regret, and (ii) the regret bound can be independent of the (inverse) minimum eigenvalue of the covariance matrix of the x_t's, a quantity present in previous bounds. Furthermore, we discuss a condition under which a better regret is achievable and how a Thompson sampling algorithm can be applied to give an efficient computation of the prices.


page 1

page 2

page 3

page 4


Policy Optimization Using Semiparametric Models for Dynamic Pricing

In this paper, we study the contextual dynamic pricing problem where the...

Dynamic pricing and assortment under a contextual MNL demand

We consider dynamic multi-product pricing and assortment problems under ...

Online Pricing with Offline Data: Phase Transition and Inverse Square Law

This paper investigates the impact of pre-existing offline data on onlin...

Phase Transitions in Learning and Earning under Price Protection Guarantee

Motivated by the prevalence of “price protection guarantee", which allow...

Inventory Control Involving Unknown Demand of Discrete Nonperishable Items - Analysis of a Newsvendor-based Policy

Inventory control with unknown demand distribution is considered, with e...

Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise

In feature-based dynamic pricing, a seller sets appropriate prices for a...

On consistency of optimal pricing algorithms in repeated posted-price auctions with strategic buyer

We study revenue optimization learning algorithms for repeated posted-pr...

Please sign up or login with your details

Forgot password? Click here to reset