On Information Plane Analyses of Neural Network Classifiers – A Review

03/21/2020
by   Bernhard C. Geiger, et al.
0

We review the current literature concerned with information plane analyses of neural network classifiers. While the underlying information bottleneck theory and the claim that information-theoretic compression is causally linked to generalization are plausible, empirical evidence was found to be both supporting and conflicting. We review this evidence together with a detailed analysis how the respective information quantities were estimated. Our analysis suggests that compression visualized in information planes is not information-theoretic, but is rather compatible with geometric compression of the activations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro