On Learning from Ghost Imaging without Imaging

03/14/2019
by   Issei Sato, et al.
12

Computational ghost imaging is an imaging technique with which an object is imaged from light collected using a single-pixel detector with no spatial resolution. Recently, ghost cytometry is proposed for an ultrafast cell-classification method that involves ghost imaging and machine learning in flow cytometry. Ghost cytometry skipped the reconstruction of cell images from signals and directly use signals for cell-classification because this reconstruction is the bottleneck in a high-speed analysis. In this paper, we provide a theoretical analysis for learning from ghost imaging without imaging.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro