On Minimizing the Maximum Age-of-Information For Wireless Erasure Channels

04/01/2019
by   Arunabh Srivastava, et al.
0

Age-of-Information (AoI) is a recently proposed metric for quantifying the freshness of information from the UE's perspective in a communication network. Recently, Kadota et al. [1] have proposed an index-type approximately optimal scheduling policy for minimizing the average-AoI metric for a downlink transmission problem. For delay-sensitive applications, including real-time control of a cyber-physical system, or scheduling URLLC traffic in 5G, it is essential to have a more stringent uniform control on AoI across all users. In this paper, we derive an exactly optimal scheduling policy for this problem in a downlink cellular system with erasure channels. Our proof of optimality involves an explicit solution to the associated average-cost Bellman Equation, which might be of independent theoretical interest. We also establish that the resulting Age-process is positive recurrent under the optimal policy, and has an exponentially light tail, with the optimal large-deviation exponent. Finally, motivated by typical applications in small-cell residential networks, we consider the problem of minimizing the peak-AoI with throughput constraints to specific UEs, and derive a heuristic policy for this problem. Extensive numerical simulations have been carried out to compare the efficacy of the proposed policies with other well-known scheduling policies, such as Randomized scheduling and Proportional Fair.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro