On moments of folded and doubly truncated multivariate extended skew-normal distributions

09/28/2020
by   Christian E. Galarza, et al.
0

This paper develops recurrence relations for integrals that relate the density of multivariate extended skew-normal (ESN) distribution, including the well-known skew-normal (SN) distribution introduced by Azzalini and Dalla-Valle (1996) and the popular multivariate normal distribution. These recursions offer a fast computation of arbitrary order product moments of the multivariate truncated extended skew-normal and multivariate folded extended skew-normal distributions with the product moments as a byproduct. In addition to the recurrence approach, we realized that any arbitrary moment of the truncated multivariate extended skew-normal distribution can be computed using a corresponding moment of a truncated multivariate normal distribution, pointing the way to a faster algorithm since a less number of integrals is required for its computation which result much simpler to evaluate. Since there are several methods available to calculate the first two moments of a multivariate truncated normal distribution, we propose an optimized method that offers a better performance in terms of time and accuracy, in addition to consider extreme cases in which other methods fail. The R MomTrunc package provides these new efficient methods for practitioners.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro